Uncovering the common risk-free rate in the European Monetary Union

Rien Wagenvoort
European Investment Bank

The views expressed in this presentation are those of the author and do not necessarily represent those of the EIB or EIB policy.
Outline

1. A parsimonious bond model
2. Longitudinal Factor Analysis
3. Data sources and bond yield construction
4. Bond yield decomposition
5. Flight-to-quality and Flight-to-liquidity
6. Systemic risk
7. Common Euro-bonds
8. Concluding observations
1. A parsimonious bond model

\[y_{it} = R_t + \pi_{it} \]
\[\pi_{it} = D_{it} + L_{BOND,it} \]
\[CDS_{it} = D_{it} + L_{CDS,it} - S_t \]
\[x_{it} \equiv y_{it} - CDS_{it} = a_i + b_i Z_t + e_{it} \]
\[R_t = \alpha + \beta Z_t \]
1. A parsimonious bond model

\[\beta = b_B \] (6)

See Hasbrouck (1996), Journal of Finance

\[L_{BOND, it} = T_{BOND, it} \gamma \] and

\[L_{CDS, it} = T_{CDS, it} \gamma \] (7)

See Amihud and Mendelson (1991), Journal of Finance

\[y_{it} - CDS_{it} \delta - b_B \hat{Z}_t = \alpha + (T_{BOND, it} - T_{CDS, it}) \gamma + S_t + \xi_{it} \] (8)
2. Longitudinal Factor Analysis

Classical methods: Principal Components and Factor Analysis, see Jöreskog (1969), Psychometrika
Rubin and Thayer (1982), Psychometrika

\[
x_{it} = a_i + b_i Z_t + e_{it} = a_i + b_i \left(\frac{x_{jt}}{b_j} - \frac{a_j}{b_j} - \frac{e_{jt}}{b_j} \right) + e_{it} \\
= a_i - \frac{b_i}{b_j} a_j + \frac{b_i}{b_j} x_{jt} + e_{it} - \frac{b_i}{b_j} e_{jt}
\]

\[
s_{ij}^2 = s_i^2 + \left(\frac{b_i}{b_j} \right)^2 s_j^2
\]
2. Longitudinal Factor Analysis

Restrictions:

\[
\begin{align*}
 s_i^2 &= \frac{1}{2} \left(s_{ij}^2 + s_{ik}^2 - \left(\frac{b_i}{b_j} \right)^2 s_{jk}^2 \right) \\
 s_j^2 &= \frac{1}{2} \left(\left(\frac{b_j}{b_i} \right)^2 s_{ij}^2 + s_{jk}^2 - \left(\frac{b_j}{b_i} \right)^2 s_{ik}^2 \right) \\
 s_k^2 &= \frac{1}{2} \left(\left(\frac{b_k}{b_i} \right)^2 s_{ik}^2 + \left(\frac{b_k}{b_j} \right)^2 s_{jk}^2 - \left(\frac{b_k}{b_i} \right)^2 s_{ij}^2 \right)
\end{align*}
\]
2. Longitudinal Factor Analysis

\[
\hat{Z}_t = \frac{b_i^2}{s_i^2} x_{iit} - a_i + \frac{b_j^2}{s_j^2} x_{jt} - a_j + \frac{b_k^2}{s_k^2} x_{kt} - a_k
\]

(12)

\[
\hat{a}_i = \bar{E}_t [x_{iit}]
\]

(13)

\[
V[Z_t] = V[\hat{Z}_t] - s_{\hat{Z}}^2
\]

(14)
2. Longitudinal Factor Analysis

Average error in the estimated factor loadings

Average error in the estimated idiosyncratic risks \(\left(\frac{s_i^2}{b_i^2} \right) \)

PC = Principal Components, EM = Factor Analysis, LFA = Longitudinal Factor Analysis
3. Data sources and bond yield construction

- Daily 5-year and 10-year bond spot-yields based on Bloomberg (generic) z-spreads
- Maturity correction by interpolation (or extrapolation) of the closest bonds to the reference maturity but including the on-the-run bond (see Blanco (2001), Bank of Spain, and Ejsing and Sihvonen (2009), ECB WP)

Bond selection criteria:

- Plain vanilla fixed coupon bonds
- Original maturity > 4 years
- Minimum size of € 1 billion for French, German and Italian bonds. For all other issuers, including the EIB, the minimum size is € 500 million
3. Data sources and bond yield construction

- Bond transaction costs are measured by *bid-ask* spreads derived from executable quotes (source = Bloomberg bond trader composite)

- Data cleaning:
 - Prices before the bond issuance date are ignored
 - Outliers and missing values are replaced by interpolated values

- Credit Default Swap (CDS) price providers: Bloomberg generic, Credit Market Analysis (CMA) and Markit

- CDS transaction costs are measured by *ask-bid* spreads
3. Data sources and bond yield construction

10-year bond spot-rates (in %)

Source: Bloomberg, authors’ calculations
3. Data sources and bond yield construction

10-year CDS spreads (in basis points)

Source: CMA, Markit and Bloomberg
4. Bond yield decomposition

The Bund yield versus the common risk-free rate

5-year yield (in %)

10-year yield (in %)

Source: Bloomberg, authors’ calculations
4. Bond yield decomposition

10-year bonds

Credit Risk Premium (in b.p.)

Liquidity Risk Premium (in b.p.)

Source: Authors’ calculations
4. Bond yield decomposition

10-year bond yield decomposition (in basis points, end 2011)

<table>
<thead>
<tr>
<th>Country</th>
<th>Bond yield</th>
<th>Common risk-free rate</th>
<th>Credit Risk Premium (CRP)</th>
<th>Liquidity Risk Premium (LRP)</th>
<th>CRP before the crisis</th>
<th>LRP before the crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>302</td>
<td>81</td>
<td>195</td>
<td>26</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Belgium</td>
<td>413</td>
<td>81</td>
<td>312</td>
<td>20</td>
<td>2.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Finland</td>
<td>245</td>
<td>81</td>
<td>156</td>
<td>9</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>France</td>
<td>324</td>
<td>81</td>
<td>235</td>
<td>8</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Germany</td>
<td>187</td>
<td>81</td>
<td>105</td>
<td>2</td>
<td>-0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Greece</td>
<td>3384</td>
<td>81</td>
<td>1739</td>
<td>1564</td>
<td>25.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Ireland</td>
<td>835</td>
<td>81</td>
<td>654</td>
<td>100</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Italy</td>
<td>690</td>
<td>81</td>
<td>583</td>
<td>27</td>
<td>24.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Netherlands</td>
<td>231</td>
<td>81</td>
<td>145</td>
<td>5</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Portugal</td>
<td>1431</td>
<td>81</td>
<td>1067</td>
<td>283</td>
<td>11.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Spain</td>
<td>544</td>
<td>81</td>
<td>438</td>
<td>25</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>EIB</td>
<td>307</td>
<td>81</td>
<td>190</td>
<td>36</td>
<td>9.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations
5. Flight-to-quality and flight-to-liquidity

Groups are selected on ex ante liquidity risk or ex ante credit risk:

Lowest ex ante liquidity risk:
- Pre-crisis (February 2006 – June 2007): Austria, Belgium, France, Germany, Greece, and Italy
- Interbank crisis (July 2007 – August 2008): Belgium, France, Germany, Greece, Italy and Netherlands
- Subprime crisis (September 2008 – March 2010): Belgium, France, Germany, Italy, Netherlands and Spain

Lowest ex ante credit risk:
- Pre-crisis (February 2006 – June 2007): Finland, France, Germany, Ireland, Netherlands and Spain
- Interbank crisis (July 2007 – August 2008): Austria, Finland, France, Germany, Netherlands and Spain
- Subprime crisis (September 2008 – March 2010): Austria, Finland, France, Germany, Netherlands and EIB
5. Flight-to-quality and flight-to-liquidity

10-year bond liquidity risk premium (in basis points)

Interbank crisis versus pre-crisis

Subprime crisis versus Interbank crisis

Euro-area sovereign debt crisis versus subprime crisis
6. Systemic risk

Derived from 5-year instruments

- Double default risk in the CDS spread
- Common component in the Credit Risk Premium of AAA countries
- Credit Risk Premium on the Bund
- Average Credit Risk Premium on AAA bonds

Derived from 10-year instruments

In basis points

Source: Authors’ calculations
7. Common Euro-Bonds

Risk-free rate and risk premiums on the US Treasury bond, the Bund and a hypothetical common Euro-bond with joint and several guarantees

Source: Authors’ calculations
8. Concluding observations

- The long-term risk-free rate is neither equal to the Bund yield nor equal to the difference between the Bund yield and the CDS spread.
- Current risk-free rates imply very low or even negative real returns.
- The increase in bond spreads was mainly driven by credit risk for Germany and the Netherlands; for all other countries both credit and liquidity risk have played a significant role.
- Investors chase both credit quality and liquidity.
- Systemic risk was higher during the sovereign debt crisis in 2011 than during the subprime crisis at the end of 2008.
- Euro-bonds can reduce both credit and liquidity risk for all.
Vive l’Euro-bond
Vive l’Europe!
4. Bond yield decomposition

5-year bonds

Credit Risk Premium (in b.p.)

Liquidity Risk premium (in b.p.)

Source: Authors’ calculations
4. Bond yield decomposition

5-year bond yield decomposition (in basis points, end 2011)

<table>
<thead>
<tr>
<th>Country</th>
<th>Bond yield</th>
<th>Common risk-free rate</th>
<th>Credit Risk Premium (CRP)</th>
<th>Liquidity Risk Premium (LRP)</th>
<th>CRP before the crisis</th>
<th>LRP before the crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>206</td>
<td>-11</td>
<td>166</td>
<td>51</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Belgium</td>
<td>326</td>
<td>-11</td>
<td>285</td>
<td>52</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Finland</td>
<td>151</td>
<td>-11</td>
<td>133</td>
<td>29</td>
<td>-0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>France</td>
<td>206</td>
<td>-11</td>
<td>184</td>
<td>33</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Germany</td>
<td>84</td>
<td>-11</td>
<td>92</td>
<td>3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Greece</td>
<td>4982</td>
<td>-11</td>
<td>2575</td>
<td>2417</td>
<td>13.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Ireland</td>
<td>762</td>
<td>-11</td>
<td>558</td>
<td>214</td>
<td>n.a.</td>
<td>3.4</td>
</tr>
<tr>
<td>Italy</td>
<td>602</td>
<td>-11</td>
<td>571</td>
<td>42</td>
<td>11.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Netherlands</td>
<td>142</td>
<td>-11</td>
<td>138</td>
<td>15</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Portugal</td>
<td>1587</td>
<td>-11</td>
<td>1104</td>
<td>494</td>
<td>7.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Spain</td>
<td>414</td>
<td>-11</td>
<td>371</td>
<td>53</td>
<td>1.7</td>
<td>0.4</td>
</tr>
<tr>
<td>EIB</td>
<td>225</td>
<td>-11</td>
<td>195</td>
<td>40</td>
<td>7.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations