Impact of Preventive Maintenance on Flexible Pavement Service Life

M. Ruíz, L. Ramírez, F. Navarrina, M. Aymerich

GMNI — GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA

Escuela de Ingenieros de Caminos / Universidad de A Coruña (UDC)

e-mail: luis.ramirez@udc.es
webpage: http://caminos.udc.es/gmni
Background (I)

Stereographic Polar Image of SPAIN, EU — Courtesy of National Institute of Meteorology
Satellite image of GALICIA — Courtesy of NASA
Background (III)

Ribeira Sacra (Sil River Canyon) — Courtesy of Wikimedia Commons [by SanchoPanzaXXI]
Road construction and maintenance is a specially relevant issue, due to

- the dispersion of settlements,
- the length and density of the secondary road network,
- the complicated orography, and
- the rainy weather.

Almost 100% of roads in the region are made of FLEXIBLE type Hot Mix Asphalt (HMA) pavements.
Outline

- Introduction
- Problem Statement
- Objectives
- Preliminary results
- Expected Outcome
Introduction

- Introduction
- Problem Statement
- Objectives
- Preliminary results
- Expected Outcome
Road transport is a key element for the economic growth and development.

Importance of the Road Transport in the EU:
- About 45% of the transported goods
- Over 80% of the passengers
- Generates close to 2% of GDP
- Employs over 5 million people
- Investment in infrastructures ≃ 0.6% of the GDP
Investment in transport infrastructure — Source OECD Transport Statistics
[Organisation for Economic Co-operation and Development (OECD)]
In Europe, since about 7–8 years...

$\textbf{ECONOMIC CRISIS}\quad \text{⇒}\quad \text{Investment in road infrastructures}(*$

85.8 billion EUR \(
\quad \rightsquigarrow\quad \)
63.3 billion EUR
(2008) \quad (2013)
Reduction \approx 26\%

$\quad \text{⇒}\quad \text{Investment in road infrastructure maintenance}(*$

30.2 billion EUR \(
\quad \rightsquigarrow\quad \)
23.4 billion EUR
(2008) \quad (2013)
Reduction \approx 23\%

(*): Investment of the EEA-33 countries. \textit{Source OECD.Stat}
Civil Engineering Public Works:

- increasing pressure for **optimizing operations** and **reducing costs**,
- economic & political decisions prevail against technical reasons.

Old questions are posed, once again...

Which would be the effects of delaying
(temporarily, during this crisis period)
“non–essential” maintenance operations? (*)

(*) This question stands mainly for the secondary road network.
Lack of maintenance ⇒ Expensive Future

Pavement deterioration curve along its lifetime. PCI stands for Pavement Condition Index. Source US Department of Transportation [Federal Highway Administration]
As pointed by the European Parliament...

1. "The **quality** of road infrastructure is a key factor in road accidents"

2. "There is a direct relationship between **pavement condition** and transport fuel consumption"
Problem Statement

- Introduction
- Problem Statement
- Objectives
- Preliminary results
- Expected Outcome
Problem Statement (I)

REDUCTION IN ROAD MAINTENANCE

⇓

NEW OPPORTUNITIES IN MANAGING

⇓

LONG-TERM MAINTENANCE
Problem Statement (Ia)

REDUCTION IN ROAD MAINTENANCE

\[\downarrow \]

NEW OPPORTUNITIES IN MANAGING

\[\downarrow \]

LONG-TERM MAINTENANCE

Impact of Preventive Maintenance on Flexible Pavement Service Life
One of the key factors in the design construction and maintenance of road infrastructures is the definition of the pavement lifetime.

Directly determined by the number of axles of vehicles rolling on each section and the load carried by each axle to the pavement.

FATIGUE ANALYSIS
Strain-based fatigue model for Hot Mix Asphalt (HMA) pavements:

\[\epsilon_r = K \cdot N^{-\alpha} \iff N = \left(\frac{K}{\epsilon_r}\right)^{1/\alpha}, \]

where

- \(N \) = number of load cycles to failure,
- \(\epsilon_r \) = reference strain,
- \(K, \alpha \) = coefficients that depend on the HMA type.
Fatigue damage is cumulative and grows with the number of load cycles.

- Seminal idea: **LINEAR RULE** (Palmgren, ≈ 90 years ago).
- Mathematical formulation: **MINER’S RULE** (≈ 70 years ago).

\[
\psi = \sum_i \left(\frac{n_i}{N_i} \right)
\]

- \(\psi\) ≡ total accumulated fatigue damage
- \(n_i\) ≡ actual number of cycles of each load
- \(N_i\) ≡ number of cycles to failure

\[\psi \geq 1 \Rightarrow FAILURE\]
Then:

- $\tau = 1 \rightarrow$ the end of the project design life period.

- $\psi(1) \begin{cases} < 1 & \rightarrow$ pavement section is oversized, (*) \\ = 1 & \rightarrow$ pavement section is strictly well sized, \\ > 1 & \rightarrow$ pavement section is undersized. (**)

- If section is undersized, non dimensional time τ_s such that $\psi(\tau_s) = 1$ marks the end of the structural service life at real time $T_s = \tau_s T_p < T_p$.

(*) Expected to be in good condition beyond the project design life period.

(**) Expected to collapse before the project design life period is over [UNACCEPTABLE].
Evolution of the accumulated fatigue damage indicator $\psi(\tau)$ for Section T3121.
Low rate of structural damage when road profile is smooth (low–IRI conditions).
In 2013 **EUROVIA** awarded a project to our research group by its subsidiary firm **OVISA Pavimentos y Obras S.A.**

Objective:

QUANTIFY THE REDUCTION IN THE STRUCTURAL SERVICE LIFE OF FLEXIBLE PAVEMENTS DUE TO THE RISE OF THE DYNAMIC AXLE LOADS AS THE PROGRESSIVE DETERIORATION OF THE ROAD PROFILE OCCURS.

Dynamic Axle Loads (II)

High rate of structural damage when road profile is rough (high–IRI conditions).

Rough Road Profile (High IRI)

Dynamic Loading

High Rate of Structural Damage
Quarter-Vehicle (QV) Model.
By applying Newton’s second law, we get the system of ordinary differential equations

\[M \ddot{\bar{u}}(t) + \dot{C} \dot{\bar{u}}(t) + K \bar{u}(t) = \bar{b} \ddot{y}_0(t), \]

\[M = \begin{bmatrix} (m_1 + m_2) & m_2 \\ m_2 & m_2 \end{bmatrix}, \quad C = \begin{bmatrix} c_1 & 0 \\ 0 & c_2 \end{bmatrix}, \quad K = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}, \quad \bar{b} = - \begin{bmatrix} (m_1 + m_2) \end{bmatrix}, \]

\[\bar{u}(t) = \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}, \quad u_1(t) = y_1(t) - y_0(t) - \delta_1, \quad u_2(t) = y_2(t) - y_1(t) - \delta_2. \]
Dynamic axle loads $\rightarrow \begin{cases} \uparrow \text{Damage} \\ \downarrow \text{Lifetime} \end{cases}$

Evolution of accumulated fatigue damage indicator $\Psi(\tau)$.

Source Previous GMNI work
Three of the key factors in the dynamic loading behaviour are:

- Pavement condition \rightarrow Roughness \Rightarrow IRI(*)
- Suspension System
- Axle distribution of heavy vehicles

(*) International Roughness Index
Suspension behaviour. Old vs New.

Source KYB
Transmission of load to the pavement and reference strain for the fatigue model.
Axle distribution of heavy vehicles (II)

Some axle load distribution factors.

Source AASHTO

[American Association of State Highway and Transport Officials (AASHTO)]

<table>
<thead>
<tr>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>LOAD DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-2</td>
<td>TRUCK SEMI TRAILER (5 AXLE)</td>
<td>0.112W 0.222W 0.222W 0.222W 0.222W</td>
</tr>
<tr>
<td>11-3</td>
<td>TRUCK SEMI TRAILER (5 AXLE)</td>
<td>0.105W 0.197W 0.216W 0.216W 0.216W</td>
</tr>
<tr>
<td>11-11</td>
<td>TRUCK TRAILER (4 AXLE)</td>
<td>0.113W 0.299W 0.258W 0.276W</td>
</tr>
<tr>
<td>12-12</td>
<td>TRUCK TRAILER (6 AXLE)</td>
<td>0.100W 0.177W 0.169W 0.203W 0.131W 0.132W</td>
</tr>
<tr>
<td>12-3</td>
<td>TRUCK SEMI - TRAILER (6 AXLE)</td>
<td>0.0750W 0.196W 0.196W 0.187W 0.187W 0.1575W</td>
</tr>
<tr>
<td>1-1</td>
<td>TRUCK (2 AXLE)</td>
<td>0.22W 0.80W</td>
</tr>
<tr>
<td>1-2</td>
<td>TRUCK w/ TANDEM AXLE (3 AXLE)</td>
<td>0.129W 0.4W 0.4W</td>
</tr>
<tr>
<td>1-3</td>
<td>TRUCK W/ TRIDEM AXLE (4 AXLE)</td>
<td>0.208W 0.256W 0.256W 0.256W</td>
</tr>
<tr>
<td>11-1</td>
<td>TRUCK SEMI TRAILER (3 AXLE)</td>
<td>0.112W 0.444W 0.444W</td>
</tr>
<tr>
<td>11-2</td>
<td>TRUCK SEMI - TRAILER (4 AXLE)</td>
<td>0.166W 0.235W 0.276W 0.276W 0.253W</td>
</tr>
<tr>
<td>12-1</td>
<td>TRUCK SEMI TRAILER (4 AXLE)</td>
<td>0.150W 0.252W 0.279W 0.279W 0.230W</td>
</tr>
</tbody>
</table>
It is believed that if preventive maintenance is programmed to be applied too infrequently the maintenance and user costs will increase. On the contrary, if it is applied too frequently the maintenance program cost will be reduced, but due to the traffic interruption there are costs in terms of user delay and inconvenience.
Objectives

► Introduction
► Problem Statement
► Objectives
► Preliminary results
► Expected Outcome
Objectives (I)

ANALYZE
UNDERSTAND
IMPROVE
INPUTS

-Pavement Characteristics:
- Materials
- Number of layers
- Pavement Condition Index (PCI)
- Projected Service Lifetime
- Current IRI

-Average daily traffic of heavy vehicles (ADT_h)

-Maintenance Strategy

OUTPUTS

MATHEMATICAL MODEL

UNIVERSIDAD DE A CORUÑA — GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA
Preliminary results

- Introduction
- Problem Statement
- Objectives
- Preliminary results
- Expected Outcome
Application of Conservation strategies to a secondary road.

Input:
- Section T3121 of the Spanish Standard 6.1-IC (*)
- $IRI_0 = 1.5mm/m$.

Two strategies:
- Strategy 1: Single superficial renew of the upper layer at $\Delta \tau = 1/2$.
- Strategy 2: Two superficial renews of the upper layer each $\Delta \tau = 1/3$.

Application of Conservation Strategy 1 to a secondary road.

Evolution of accumulated fatigue damage indicator $\Psi(\tau)$.
Application of Conservation Strategy 1 to a secondary road.

Evolution of International Roughness Index IRI.
Application of Conservation Strategy 2 to a secondary road.
Application of Conservation Strategy 2 to a secondary road.

Evolution of International Roughness Index IRI.
Expected Outcome

- Introduction
- Problem Statement
- Objectives
- Preliminary results
- Expected Outcome
1.- The project will contribute to understand the importance of considering the dynamic load effects on the pavement lifetime.

2.- The results of this project can be used to define a set of recommendations on how to evaluate different maintenance strategies by road project promoters.

3.- The tool developed in this project can be used as an evaluation tool for projects financed by the EIB.
IMPACT OF PREVENTIVE MAINTENANCE ON FLEXIBLE PAVEMENT SERVICE LIFE

Luis Ramírez

email: luis.ramirez@udc.es

Thank you